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Abstract

As electric utilities strive to become more competitive, efficient operation and
maintenance of steam power cycles becomes a greater concern. As part of an
aggressive thermal performance monitoring and improvement program, Tri-State
Generation and Transmission Association has integrated advanced pattern recognition
technology with more conventional heat balance analysis methods to monitor and
diagnose plant cycle deficiencies.

Advanced pattern recognition (APR) technology is used for continuous monitoring of
plant operation. It can quickly diagnose faulty instrumentation and supply accurate
replacement values, providing confidence in the data used for daily operating and
engineering decisions. Furthermore, it accurately identifies calibration drift, providing
Tri-State with the information required to allocate manpower to only those instruments
requiring maintenance. APR is also integrated into the data validation and analysis
portions of annual thermal performance tests, providing increased confidence in test
data and reducing data analysis time. This paper will present the advanced pattern
recognition methodology applied at Tri-State and the benefits in optimizing plant
operations and assessing power plant performance.




Introduction

In 1993, Tri-State's performance improvement group began investigating improved
methods for validating performance test data and plant computer data. Previous data
problems had increased the time required for precision performance tests, and
incorrect plant computer data had caused major problems with our on-line performance
monitoring program. In addition, comparisons of test grade instruments to plant
instruments over a three year period yielded average deviations of 30 psi in main
steam pressure, 5°F in main steam temperature and 5°F in hot reheat temperature.
This translates to more than $800,000 annually in lost capacity and increased heat
rate. This information led to the decision to pursue alternate methods of verifying
instrument accuracy and the ultimate selection of advanced pattern recognition (APR)
technology.

At the 1994 EPRI Heat Rate Improvement Conference in Baltimore, Maryland, we
presented a paper outlining the installation of an advanced pattern recognition system
for calibration monitoring at Tri-State's Craig Generating Station. Since that time, we
have refined the calibration monitoring system installed on Craig Unit 3 for improved
accuracy and expanded the use of APR to diagnosis of equipment deficiencies at our
Nucla station.

Traditional Signal Validation

Signal validation consists of methodologies for distinguishing measurement failures
from process faults and selecting which instrumentation signals to use in control and
analysis functions. There are two legacy methods of signal validation which have been
used extensively in process monitoring systems - comparisons among muitiple values
representing the same measurement and the use of reasonableness checking among
multiple signals having a quantifiable relationship with the measurement being
validated.

Comparison methods are based on the availability of at least two measurements (direct
or derived) of a desired process state. These redundant measurements may then be
used to make some judgment about the validity of the measurement signals. The
simplest comparison methods involve the installation of two sensors at the same
location for the same process state. These redundant sensors are compared with each
other, and disagreement between them is considered indicative of failure of one of the
measurements. However, if only two measurements are available, no decision can be
made on which to accept. An unambiguous measurement quality determination
requires more than two measurements. When at least three measurements are
available for comparison, it is possible to make some logical choice of which to accept
or reject, and to form a "best estimate" of the true value of the process state. When
there are no physically redundant devices, it is possible to use analytically redundant
measurements. An analytically redundant measurement can be found when there is a
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process model which can be used to derive a representative value of a directly
measured state from measurements of other states. Once three or more
representations of a particular measurement are available, there are methods which
may be used to discriminate failed measurements and select the most representative
"true" value of the measurement.

The other traditional method of signal validation, reasonableness checking, has been
implemented much less frequently than direct comparison methods. This is a more
qualitative or symptomatic method which is based on a comparison between the
measurement value and certain reference values based on a qualitative estimate of
what the measurement should be or on values associated with known failure modes of
the measurement channel. In reasonableness checking, one takes advantage of the
fact that deviations of measurements from expected values do not generally occur in an
isolated fashion - that process faults usually result in the deviation of groups of
measurements. Thus if a single measurement has an unexpected value or a value
characteristic of measurement failure, it is most likely in error.

This form of reasonableness checking may also he applied to the derivative of a
measurement. For most measurement situations, it is possible to estimate the upper
bound of the derivative based on process knowledge or model studies, and then use
that estimate as a limit for the allowable rate of change of the channel. This technique
is particularly useful for measurement channels with relatively long time constants,
such as temperature detectors in thermowells, or for measurements of process
parameters which have long time constants themselves. A common form of applying
limits on the derivative is to monitor two redundant measurements, immediately
rejecting the one whose derivative assumes a high value.

The usefulness of the methods described above has been severely limited by the cost
and complexity of their implementation. Installing redundant sensors is very expensive
and tends to be limited to a small subset of the total number of sensors which might
have significant impact on process reliability. Comparison methods also generally
compare only two or three measurements to each other, or a measurement to a fixed
limit. Consequently, this approach is not very robust and unlikely to cover a large
subset of process measurements. In addition, comparison methods cannot be used for
diagnosis of any type of process failure other than that of isolated sensors, and every
comparison must be enumerated by the designer and appropriate limits assigned in
advance.

There is, therefore, motivation for the implementation of more robust methodologies of
signal validation. Methodologies which are able to use all measurement information
and diagnose all sensors in the process, can be assembled and configured with
minimal human intervention, and can adapt to changing process conditions
encountered in normal operation, such as operation at various power levels.
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Pattern Recognition Basics

Pattern recognition treats any process or system as a set of numeric data values. For
example, a power plant is viewed as a list of pressure, temperature, and flow values
rather than an assemblage of turbines, pipes, and heat exchangers. To understand
how pattern recognition works with data from a power plant, consider a hypothetical
system that has just two significant measurable parameters, P1 and P2. Data for this
simple process can be collected through a series of tests and a graph can be
constructed showing one parameter versus the other.

P2 o

P1

Figure 1. Plotting Process Parameters

The individual points in Figure 1 represent discrete operating states for a simple
process. That is, each point represents a unique characteristic condition of the
process. In order to accurately describe a single process state at any given time, the
values of all the system parameters must be known (two in this case).

The process can then be generalized to estimate behavior at operating states for which
no discrete data values have been collected by placing a continuous curve through the
plotted points (Figure 2). This curve represents known normal operation and can be
referred to as the "system performance curve". It should be noted that, when using
pattern recognition techniques, these points are considered to be interrelated and are
not separated into input and output (independent and dependent) categories.
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P2

P1

Figure 2. Generalizing Process Behavior

This modest procedure can lead to some very useful results. For example, if at a later
time the value of one of the parameters is known, the value for the other can be readily
estimated (Figure 3). In addition, the generalized plot could be used to determine
whether or not the process is currently operating in a manner consistent with past
operation (Figure 4).

P2

n a value for P1,
an be determined.

‘____ﬁ___

P1

Figure 3. Determining Unknowns
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This operating condition is located close to —==
the curve and is therefore consistent
with past system behavior.

P2

x —+——— But this point is far removed from the
curve and is not characteristic of past
system operation.

P1

Figure 4. Assessing Process Operation

Although the examples above are presented graphically, similar results can be
obtained numerically. However, most processes cannot be characterized sufficiently
with just two parameters. For example, a complex process such as a power plant
requires the measurement of many different parameters to describe plant conditions
completely. Furthermore, most of the parameters associated with a complex process
are interrelated and cannot be assessed simply as pairs of variables isolated from the
rest of the system. So with most real-world processes it is necessary to examine many
different parameters simultaneously rather than pairing them off in sets of two.

Instead of the simple case of P1 vs. P2 for two parameters, we now have a more
complicated situation of P1 vs. P2 vs. P3 vs. P4 vs. . . . Pn for n different parameters
associated with a complex process. Although a graph showing all parameters plotted
simultaneously for a complex process is not feasible, numerical methods analogous to
the concepts presented graphically above can be employed. In other words, numerical
techniques can be applied that utilize historical data values collected from a complex
process to form the numerical equivalent of a "system performance surface".

Advanced Pattern Recognition Methodology
Advance Pattern Recognition (APR) works with system data that is captured and
arranged in arrays called "data records". A data record is simply a snapshot of the

system data for a single instant in time. The individual items which comprise the data
record are called "points" and the values associated with these points are called "point
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values". Table 1 illustrates these concepts for a system consisting of five measured
points.

Point | Point Description Point

ID Value

1 Main Steam Temperature | 1005.2
2 Main Steam Pressure 1925.5
3 Condenser Pressure 2.05

4 Feedwater Flow 2716.7
5 Generator Power 435.8

Table 1

APR analysis is performed by quantifying the "similarity" between any two data records
that are being compared for purposes of creating modeled estimates and other
essential functions. Computed similarities are scalar values that range between zero
and one. A similarity value of one indicates the two plant conditions being compared
are identical (e.g., each temperature, pressure, and flow value is exactly the same in
both data records). A similarity value of zero indicates that the two conditions are
completely different from each other (e.g., plant conditions at full power compared to
plant conditions at zero power).

Prior to analyzing a system, a number of snapshots of plant data are collected and
stored in a file. These "reference data records" generally cover a range of system
operating conditions and act as a knowledge base which is used to define the
characteristics of the system.
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Figure 5. Schematic of the APR Process

After the reference data records have been collected and stored, a new snapshot of
system data called the "input data record"” is obtained for assessment. The input data
record is first compared with each of the reference data records using the APR
similarity operation. Several data records are selected from the reference set that have
the highest similarity to the input record, while striving to bound each of the input point
values. The data records selected from the larger reference set in this manner are
referred to as "nearest neighbor" records. Once the nearest neighbor records have
been selected, the similarity between all pairs of nearest neighbor records is computed,
forming a "recognition matrix" of similarity values. This recognition matrix is then
utilized in conjunction with the input data record to compute values for each of the
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monitored points. That is, a computed point value is calculated for each of the input
points. The computed point values are collectively known as the "output data record".
Figure 5 summarizes this procedure.

The output record is an extremely accurate representation of how the system should be
behaving based both on past performance and on current operation. The calculated
values are highly fault-tolerant because defective plant parameters in the input record
do not markedly bias or affect the accuracy of the computations. In addition, for
situations where one or more plant parameters are completely missing from the input
record, APR will provide very accurate predictions for these parameters as well. Once
the output record has been computed, it may be compared with the input record for
further data manipulations. Again, it should be noted that the APR approach calculates
an output point value for each and every input point (Figure 6). The significance of any
differences between the input and output values is generally viewed in the context of
the specific application (e.g., indication of a signal failure, calibration drift, abnormal
system operation, etc.).

F,1 > > P1
P,—> —> P,
) APR )
P, —> —> P,
Inputs Outputs

Figure 6. An Output for Every Input
Advanced Pattern Recognition Characteristics
The APR technology has several important characteristics:

Fault Tolerance: APR minimizes the effects of incorrect or missing plant
measurements. This is due to the fact that it treats all monitored parameters as
being interrelated. APR uses all parameters simultaneously to determine all of
the predicted values so the impact of individual defects is minimized.

Localized Modeling: APR forms a local model for every new input data record.
Because it does not operate using a single set of coefficients, complex non-
linear systems can be modeled more accurately and with fewer examples than
are required with other techniques. In addition, localized modeling automatically
takes into account changes in a system as it progresses through different
operating conditions.
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No Iterative Training Phase: APR does not require an iterative training phase.
Because no iterative training phase is involved, the reference data can be
changed as often as desired allowing immediate adaptation to new information.

High Dimensionality: APR is unrestricted in the number of plant parameters that
it can handle in a single model, however, extremely large systems should often
be broken down into multiple, smaller models based on point relationships
identified using APR tools. These smaller models enhance model accuracy and
fault tolerance. In practical applications, it has been successfully applied to
systems containing as many as 400 different parameters.

Models All Parameters: APR is unusual in that it models all variables
simultaneously. This is essential for detecting faults in individual plant
parameters and for assessing abnormalities in overall system operation. Most
other techniques must separate system parameters into dependent and
independent sets which often precludes the ability to pinpoint specific
parameters that are deviating from normal operating behavior.

Repeatable: APR is 100% repeatable. There are no random settings of any
initial conditions. If the analysis is executed twice using the same reference data
set, it will produce identical results.

Deterministic: The APR algorithm is a well-behaved deterministic relationship.
There are no iteration schemes requiring convergence criteria. The algorithm
has no failure modes and will always produce an optimal solution given the
available information. Further, it is unique in that it enables the determination of
uncertainties associated with the final estimated values.
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Tri-State Advanced Pattern Recognition Applications

At Tri-State, we have successfully applied APR to three different areas of our
performance improvement program. These three areas are continuous calibration
monitoring, plant health monitoring and diagnostics, and precision test data validation.
Following are discussions of each application.

Continuous Calibration Monitoring

An APR calibration monitoring system was installed on Craig Unit 3 during late 1993
and early 1994. The system monitors 159 plant process points, including turbine,
boiler, feeedwater and circulating water system data. These 159 points are the primary
inputs to the Craig 3 performance monitoring system.

The initially collected data is the basis of the reference data set, and spans the range
of plant operating conditions, from start-up to full load operation. Realize that in a
fossil plant at a given load, there can often be many unique combinations of equipment
in service and acceptable operating configurations, and accurate modeling of system
conditions requires data for those unique conditions be bound by the reference data
set.

The multi-dimensional system performance surface is generated by the advanced
pattern recognition software. For the Craig system, this could be a 159-dimensional
performance surface, but to improve the accuracy of all predictions, the model was
divided into five sub-systems of closely coupled points. These sub-systems range in
size from 18 to 39 points. Note that all five sub-systems are modeled using the same
reference data set.

Case Studies

During the initial data collection and model set-up at Craig Station, APR identified
problems with high economizer O2 Ievel, a modulating valve on the steam coil air
heater, a modulating high pressure feedwater heater level controller, and problems with
the main condenser pressure calibration. These problems had apparently existed for
some time, but were readily identified using APR technology.

Four months after the installation of the APR calibration monitoring system on Craig 3,
we were performing upgrades to the Craig 3 performance monitoring system. Because
of the sensitivity of heat balance calculations to data errors, we were using the APR
system to screen and verify plant data. We noticed that auxiliary power, calculated as
gross generator power less net, was unusually low. Historically, generation metering
problems on this unit were associated with the gross generation metering, and our first
instinct was to write a work request to have the gross generation transducers
calibrated. However, we decided to first look at the APR predictions for all metered
generation parameters. We discovered that APR-predicted gross generation matched
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very well with measured gross generation, but actual net generation was higher than
the APR-predicted value. Further investigation revealed that auxiliary power was
approximately 5 Mw lower than normal because several large compressors were out of
service. In this instance, the APR system helped diagnose a problem before a work
request was issued, avoiding wasted manpower for the recalibration of valid
instruments.

The “C” feedwater heater on Craig 3 is the third highest pressure feedwater heater,
with its extraction located at the intermediate pressure (IP) turbine outlet. Because the
station extraction pressure transmitters are located at the feedwater heaters, when an
extraction is out of service there is no pressure indication. Since this pressure is used
to determine the IP turbine outlet condition and the low pressure (LP) turbine inlet
condition, a missing value of “C” heater extraction pressure will cause a failure in
turbine cycle heat balance calculations. When this condition occurred, APR provided
an accurate replacement value for “C” extraction pressure. If integrated with the
performance monitoring system, this would have prevented failure of the turbine cycle
heat balance caiculation.

During recent performance tests, a plant information computer input card failed,
sending no data to our archival system for several process points. One of these points
was net generation. The problem was discovered and corrected, but provided an
opportunity for some additional validation of the APR technology. Figure 7 depicts the
measured net generation and the APR predicted net generation. Note the excellent
agreement between the measured and predicted values both before and after the input
card failure. This excellent agreement increases confidence that the predicted value
during the card failure is a realistic replacement value
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Figure 7. APR Net Generation Prediction

Tri-State has recently begun exploring alternative chemical treatments for improved
cycle chemistry. One of these methods, oxygenated treatment, requires feedwater
heater vents to be normally closed and then opened as needed to minimize build up of
non-condensable gas in the feedwater heater. In preparation for an oxygenated
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treatment trial, we successfully validated the feedwater heater instrumentation using
APR technology, and issued work requests on instruments that were out of compliance.

Plant Health Monitoring And Diagnosis

Nucla Unit 4 is a 110 Mw circulating fluidized bed (CFB) unit located in Nucla,
Colorado. Twice annually, Tri-State is required to perform a Uniform Rating of
Generating Equipment (URGE) test to demonstrate the output of the unit. During the
Spring 1995 test we discovered that our fans were limiting our load. Since this was not
usually the limiting factor, we began investigating the situation.

Plant data had been collected during previous URGE tests and during boiler
acceptance tests and saved in an ASCII format. Unfortunately, APR had not been
utilized previously at Nucla station, which necessitated development of an APR system
model. Based on previous experience at Craig station, an initial list 168 data points
was reduced to 143 by removing those which would have minimal correlation to the rest
of the system (e.g. barometric pressure, ambient temperature, etc.) and those points
which were known to be faulted at the time of the initial data collection. The remaining
143 points consisted of pressures, temperatures, flows, and generation measurements
associated with the boiler and the four steam turbines.

Data collected during January and February 1994 were combined and used as a base
reference library, then data from March 1994 was used for model verification. The APR
predictions were in excellent agreement with the March 1994 measured data.
Additional data from May 1994 was verified and samples were added to the reference
data set to account for seasonal changes in unit performance. This provided a robust
reference data set that spanned the full range of operating and ambient conditions.
This reference data set was then used as the basis of the analysis on the Spring 1995
data. It should be noted that development and validation of the Nucla APR model
required less than eight hours to complete.

Based on the APR analysis, several potential problems were eliminated. Generation
metering, main steam flow, and fuel flow, in addition to a number of turbine cycle
boundary conditions, were verified as being correct. However, primary air, secondary
air and induced draft fan results all indicated increased air flow through the system.
This narrowed the problem down from a large number of instruments to a more
manageable number. After verifying instrumentation around the fans, we confirmed
that air and gas flow were indeed higher than before and identified air in leakage as a
problem. During a subsequent outage we found a number of leaking tubes in the tube
and shell air heater and a damaged seal on the induced draft fan.

Precision Test Data Validation

During the winter of 1995-1996 we began integrating advanced pattern recognition into
the Tri-State precision performance test program. Tri-State’s test program is based on

10-12




the intent of ASME PTC-6.1. Approximately 40 pressures, temperatures and flows that
are critical to the accuracy of the test results are measured with test grade
instrumentation and a stand-alone data acquisition system. The balance of the data
are collected via a serial link from the plant information computer. This yields a data
record approaching 300 process points, and another challenging data validation
problem. Since test preparation and set-up is a two to three week process and the
testing and analysis usually occupies an additional two weeks, we need to be sure that
the information collected is valid. Previously, we relied solely on more traditional
methods of data validation, such as instrument redundancy, test redundancy, and
manual comparison of test results to historical test data. While these traditional
methods are still employed, we have added APR validation to provide additional
confidence to our test data.

The APR test data validation is performed in the same manner as it is for continuous
calibration monitoring. A reference data set is compiled from previous test data, then
current data is analyzed using APR. Any deviations are resolved before the initial tests
are run. Data can be readily validated before tests each day, or at any point during the
test. This provides almost real time capabilities for test data validation and minimizes
“bad” tests.

Conclusion

Advanced pattern recognition technology offers a more accurate and reliable method
for validating plant data and detecting calibration drift that traditional validation
techniques. In addition, it does not require complex, high-maintenance process models
to relate process parameters. Our analysis indicates that APR-based data validation
will result in greatly increased data confidence, providing for improved operating and
maintenance efficiencies. At Tri-State, advanced pattern recognition applications have
provided replacement values for failed process measurements, helped in the validation
of performance test data and aided in the diagnosis of shifts in unit operating
conditions. Based on these successes, APR will continue to be applied to data
validation and plant health monitoring at Tri-State.
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