
Stress Wave Analysis for Prognostic Health Management
CONDITION BASED MONITORING SOLUTIONS

ABSTRACT
Prognostic health management in industrial equipment plays an increasingly important role in the development of science and technology for 

instrument measurement and analysis, including in the Internet of Things, cloud computing, data mining, and artificial intelligence. This paper studies 

a prognostic health management technology based on StressWave Analysis. The ultrasonic signals of friction, mechanical shock, and dynamic load 

on equipment’s moving parts (known as stress wave energy, or SWE) are detected and processed by stress wave sensors; the stress wave energy 

is then analyzed using the time and frequency domain feature extraction software, as well as data fusion technology based on neural networks. The 

equipment statuses are quantitatively analyzed, their faults accurately predicted, and their health diagnosis reports provided regularly. The operational 

test shows that, compared with the traditional vibration analysis technology, the StressWave system can monitor the operating condition of equipment 

better in real time and predicts faults earlier. Through use of these analyses, production safety is guaranteed, the equipment maintenance cost is 

reduced, and production efficiency is improved.

Keywords: Stress wave analysis, feature extraction software, neural network, data fusion.

INTRODUCTION

Modern society relies more and more on equipment, making it important 

to guarantee equipment quality, safety, and environmental protections to 

realize the goal of safe, reliable, efficient, and low energy consumption 

equipment. Therefore, it is of great significance to strengthen the modern 

equipment management.

The methods of equipment maintenance and repair can be classified into 

three categories: troubleshooting, preventive maintenance, and predictive 

maintenance. Troubleshooting is any passive repair done after a device 

has failed, often causing production losses and even accidents. Due to 

lack of historical data of the equipment’s operation, this type of mainte-

nance is blind and inaccurate. Preventive maintenance is done according 

to the provisions of a maintenance cycle and is the current main means 

to avoid obstacles and accidents; however, the equipment may be still 

in good condition when maintenance downtime occurs, resulting in 

excessive repairs, wasting manpower and material resources. By contrast 

to these other methods, predictive maintenance uses technology to cal-

culate when a machine may fail or need repair, allowing for better repairs 

and resource management. 

Based on the need for advanced equipment management development, it 

is necessary to adopt equipment prognostic health management technol-

ogy as an important means of predictive maintenance. The ideal 

1 Yu Peng, Datong Liu, and Xiyuan Peng, “A review of Prognostics and health management,” Journal of Electronic Measurement and Instrument, 24(1) (2010):1-9.
2 Hong Xia, Yong kuo Liu, and Chun-li Xie, Equipment fault diagnosis technology, (Harbin: Harbin Institute of Technology Press, 2010), 3.
3 National Key Laboratory of Vibration, Shock and Noise. Mechanical equipment condition monitoring and fault diagnosis technology, Shanghai: Shanghai Jiao Tong University, 2015.

technology should show the vital information of running equipment by ef-

fectively analyzing the current working state, diagnosing and forecasting 

faults, and providing technical data for equipment maintenance, ensuring 

the equipment’s normal and optimized operation1.

Through the development of advanced instrumentation measurement 

and analysis technology, such as networking, cloud computing, data 

mining, and artificial intelligence, the digitization, automation, integration, 

and networking of instrument systems are continuously improving. In 

recent years, the effectiveness and reliability of equipment prognostic 

health management (PHM) technology has been continuously improved, 

being widely used in engineer-ing and playing  more important roles in 

equipment health management and predictive maintenance in modern 

enterprises2.

Most equipment condition monitoring and fault diagnosis technologies 

are currently based on a combination of vibration measurement/analysis, 

oil analysis, infrared thermal imagery, ultrasonic flaw detection, and tem-

perature/pressure analysis techniques; because of their convenience, real 

time nature, and non-destructive methods, the use of vibration sensors 

and analysis instruments to measure mechanical equipment running 

status have become the most common method of equipment monitoring3. 

However, in the diagnosis of low-speed rotating equipment characteristic 

fault frequencies and device operating frequencies are covered by the 
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resonance and background noise of the equipment, meaning traditional 

methods can’t detect the them. This means that when the components 

of low-speed rotating equipment begin to fail or fail entirely, the vibration 

technology does not detect the change4.

Stress wave theory research is mainly concentrated on materials5-6 and 

structures7,8,9 for application in civil and transportation construction fields, 

although in recent years some studies have examined stress wave prop-

agation in gears10 but only on test technology and the results are used to 

verify the algorithm.

This paper studies StressWave, a prognostic health management tech-

nology based on stress wave analysis, which is designed to gauge the 

following: electronically signaled real-time measurements of equipment 

running friction, shock, and dynamic load; high frequency acoustic wave 

sensing techniques to filter out background vibration and noise; time 

and frequency domain extraction software features; and the use of data 

fusion technology based on neural network. This technology can carry out 

quantitative analysis and fault diagnosis of equipment to provide custom-

ers with regular analysis of equipment health, establishing a predictive 

maintenance system for enterprise.

4 Changzheng Chen et al., “Study on a new method for fault diagnosis of low speed rolling bearings based on stress wave,” Journal of Mechanical Strength, 29 (6) (2007): 885-890.
5 A. Sadri, Pawel Gebski, and Ehsan Shameli, “Refractory wear and lining profile determination in operating electric furnaces using stress wave non-destructive testing,” in Proceedings of   
 the 12th International Ferroalloys Congress, ed. Asmo Vartiainen (Helsinki: Outotec Oyj, 2010), 881-890.
6 Y. D. Kwon et al., “Stress wave analysis of PZP with coating layer using finite element method,” Material Research Innovations, 19 (S8) (2016): 370-377.
7 XP Wang, SM Tang, and B Luo, “Application of the Sonic Frequency Stress Wave Testing Technique in Anchor Rod of Expressway Slope,”Communications Standardization, 6 (2008): 89-92.
8 H Xing, XY Sun, and MM Wang, “Sonic Frequency Stress Wave Propagation Characteristics Research of Anchor System Based on Wavelet Packet Analysis,” Journal of Guangxi Normal   
 University, 31(4) (2013): 13-17.
9 N. Yan. Numerical modeling and condition assessment of timber utility poles using stress wave technique, Sydney: University of Technology, 2015.
10 David Mohamed Elforjani, MBA, “Detecting AE Signals from Natural Degradation of Slow Speed Rolling Element Bearings,” in Proceedings of the Second International 
 Conference “Condition Monitoring of Machinery in Non-Stationary Operations” CMMNO’2012, ed. T. Fakhfakh, W. Bartelmus, F. Chaar, R. Zimroz, and M. Haddar (Berlin: Springer,   
 2012), 61-68.
11 Lili Wang, Foundation of Stress waves. (Beijing: National Defense Industry Press, 2005).
12 Herbert Kolsky, Stress Waves in Solids (London: Oxford University Press, 1953).

STRESS WAVE PRINCIPLE

Stress waves are the propagation form of stress and strain disturbance. 

In a deformable solid medium, mechanical perturbations are represented 

by changes in particle velocity, as well as changes in corresponding stress 

and strain states. This change of the stress and strain state is transmitted 

by a wave called stress wave. The interface between the disturbed region 

and the undisturbed region is usually called the wave surface, and the 

velocity of wave front is called the wave velocity. Seismic waves, sound 

waves, and ultrasonic waves in solids are all common forms of stress 

waves11. 

In the case of dynamic loads varying with time, each element in the 

medium is in a dynamic process with time. For all deformable media with 

inertia, the motion of a medium is always a process of stress wave prop-

agation, reflection, and interaction when the stress wave passes through 

an object with significant changes in its internal and external loads. The 

characteristics of the process depend mainly on the characteristics of the 

material. Stress wave research mainly focuses on the unsteady motion 

of the medium, the local and early effects of the dynamic load on the 

medium, and the interaction of load and the medium12.

Figure 1: Transverse Vibration of One Dimensional Elastic Wave String
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When the stress is linearly related to the strain, the elastic wave prop-

agates in the medium; in a nonlinear relation, it is the plastic wave and 

the shock wave that propagate in the medium. As shown in Figure 1, the 

simplest string of transverse vibrations of a one dimensional elastic wave 

can be analyzed by analyzing its wave equation, which can demonstrate 

the common characteristics of many elastic dynamical problems13.

In Figure 1, U represents displacement, t is time, X indicates the position 

of the wave surface along the direction of propagation in the physical 

coordinate, and x indicates the position of the wave surface along the 

direction of propagation in the spatial coordinate. u(x,t) represents the dis-

placement of particles in x point at t time, T(x,t) represents the tension of 

the point, and ρ(x,t) represents the density of this point. C=dX/dt is called 

the material velocity or intrinsic wave velocity, and C=dx/dt is the spatial 

velocity; these two wave velocities are different expressions of the same 

physical phenomenon. For a plane wave, the relationship between the two 

kinds of velocity is c=v+(1+ε)K. In this formula, v is the particle velocity 

and ε is the engineering strain.

For materials unconcerned with speed, assume the initial density is ρ0.

There is a single function relationship between stress σ and strain σ 

under dynamic load: σ=σ(ε). In Quasilinear Wave Equations with unknown 

displacements, u(x,t) can be obtained by the conservation of mass and 

momentum equations:

                 

(1)

Where:

13 Qiantang Chen, Dynamic stress analysis of gear based on stress wave propagation theory (Xi’an: Northwestern Polytechnic University, 2006) 3.
14 David B. Board, “Stress Wave Analysis Provides Early Detection of Lubrication Problems”, Practicing Oil Analysis, July 2003.
15 John S Rinehart. Stress Transients in Solids (Santa Fe: HyperDynamics, 1975).
16 W. K. Nowacki, Stress Waves in Non-elastic Solids. (London: Pergamon Press, 1978).
17 Weiguo Guo, Yulong Li, and Tao Suo, Concise tutorial of stress wave foundations (Xi’an: Northwestern Polytechnic University press, 2007) 4.

Equation (1) has two compatibility relations that represent the real charac-

teristic line of the right and left traveling wave and the corresponding lines 

along characteristic lines respectively14:

(2)

In Equations (2), wave velocity C and wave impedance ρ0C are completely 

determined by the material properties. This result is similar to one-dimen-

sional stationary motion in gas dynamics. Thus, the problem of solving 

stress wave propagation is mathematically reduced to solving the wave 

equations in Equation (1) or equivalent characteristic line equations in 

Equations (2) under given initial and boundary conditions. The common 

numerical methods include the characteristic line method, finite difference 

method, and finite element method15.

For isotropic linear elastic materials, dσ/dε is constant, so the linear 

elastic wave velocity (sonic speed) Ce is constant; for the one-dimensional 

strain longitudinal wave, C0=(E/ρ0)
1/2, where E is the Young modulus; for 

the one-dimensional strain longitudinal wave with lateral confinement, 

C1=(E1/ρ0)
1/2, where E1 is a lateral elastic modulus, as shown in Equation 

(3).

(3)

λ is the first order of the lame constant, said material compression, equiv-

alent volume elastic modulus, or the Young modulus. μ is the second order 

of the lame constant, that represents the shear modulus of materials. K is 

the volume of compression modulus, and ν is Poisson ratio. C1 is also the 

longitudinal wave velocity in an infinite elastic medium. For the transverse 

wave, it is only necessary to understand μ, σ and ε as transverse particle 

displacement, shear stress, and shear strain, then the shear wave velocity 

Ct=(G/ρ0)
1/2, with G for shear modulus16.

The elastic wave velocity of some typical materials is shown in Table 117.

STRESS WAVE DETECTION AND ANALYSIS

When the equipment is subjected to an external force (load), it produces 

internal stress (internal change) or relative motion between surfaces. At 

the same time, the external force (load) generates a kind of elastic wave. 
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Table 1: The Elastic Wave Velocity of Several Common Materials
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This elastic wave propagates in all directions in solid, liquid, gas, and oth-

er mediums; this is the stress wave. Based on this characteristic, stress 

wave technology can evaluate and diagnosis the equipment at the earliest 

possible time for the equipment failure and operational issues. 

The prognostic health management system based on Stress Wave 

Analysis (SWA) consists of three parts: the stress wave sensor, the signal 

processing unit, and the control display unit. The stress wave sensor 

is mounted on the surface of the equipment’s moving parts (such as 

bearings, gear boxes, etc.). The stress wave signals transmitted by these 

equipment components, such as friction, mechanical shock, and dynamic 

load, are ultrasonic frequencies. The stress wave amplitude is converted 

to electrical signals in the piezoelectric sensors, then amplified and filtered 

through the high frequency band pass filter in the analog signal modu-

lator to remove low frequency noise and vibration energy from normal 

equipment movement. After the signal is amplified by the data acquisition 

box, it is transformed into the data standard, which can be received by the 

system computer or DCS/PLC system used by factory. The data is then 

stored on the system server. The system collects this data and generates 

diagnostic reports after software analysis, as shown in Figure 2.

The main tools of stress wave analysis include Stress Wave Energy (SWE), 

Stress Wave Amplitude histograms, and the Stress Wave Spectrum.

The output of an analog signal modulator is a Stress Wave Pulse Train 

(SWPT) that represents the time history of the device’s shock and 

mechanical friction events. The digital processor analyzes the SWPT to 

determine the peak levels and total energy produced by these friction and 

shock events. The calculated values of the Stress Wave Pulse Amplitude 

(SWPA) and SWE of the data are stored in the database as historical 

trends and compared with normal readings.

18 Curtiss-Wright, “Proactive System Operation and Maintenance”, Stress Wave Technology, 2011.

A vibration sensor works through a flat frequency response (e.g., 

100mV/g) to detect a wide range of frequencies (e.g., 0~15000Hz), 

making it insensitive to minor changes in machine friction that occur in 

the early fault stages. Additionally, the vibration sensor can only detect ab-

normalities when the level of fault vibration is significantly higher than the 

background vibration, well after the deterioration of the fault. The stress 

wave sensor has a very narrow frequency range (36000Hz ~ 40000Hz) 

and very high frequency response (e.g., resonance), and therefore is very 

sensitive to small defects on the surfaces of the machine, even in the 

presence of background vibration. SWA can be employed to separate, 

detect, and analyze features like SWE, SWPA, and Stress Wave Peak 

Duration (SWPD) starting in the early stages of the failure process from a 

very low frequency range of working mechanical vibrations and audible 

noise, meaning SWA plays an incomparable role in monitoring gear and 

bearing damage in equipment.

The digital analysis of stress waves consists of computing both the ampli-

tude and the energy content of detected stress waves. The amplitude (or 

peak level) of a stress wave is a function of the intensity of a single friction 

or shock event. The energy content is a computed value (the time domain 

integral) that considers the amplitude, shape, duration, and rates of all 

friction and shock events that occur during a reference time interval. The 

damage can be quantified by measuring the energy content of the friction 

event (shock amplitude and duration, i.e., the curve area produced by the 

pulse train)18 as shown in Figure 3.

The SWE run history diagram (shown in Figure 4) is generated by col-

lecting data from the system during routine operations, and shows the 

trend of SWE in relation to equipment failure. It shows the trend of SWE 

readings over time and graphically represents the health trends of the 

equipment in green, yellow, and red background areas. 

Figure 2: Stress Wave Detection and Analysis
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The Stress Wave Amplitude histogram is shown in Figure 5; the Y axis 

represents the number of frictional events, and the X axis represents the 

peak amplitude of the individual friction pulses. The tool detects the peak 

amplitude of each pulse in the stress wave pulse and distributes it on a 

voltage scale corresponding to each reading value. In normal operation 

when the device is at its best performance, the histogram is distributed in 

a narrow bell shaped curve at the lower end of the voltage, as shown in 

Figure 5 (a). But in abnormal operations, friction and shock events (such 

as lubrication problems caused by fluid or particulate contamination, or 

slipping of the rolling element) will increase the high amplitude incidents, 

resulting is a more widespread distribution, as shown in Figure 5 (b), 

where the amplitude scale is skewed to the right.

The Stress Wave Spectrum is an algorithm for analyzing stress wave 

bursts to detect their spectral content (pulse amplitude as a function of the 

repetition frequency they occur), as shown in Figure 6. SWA only detects 

events that excite the sensor at ultrasonic frequencies, filtering out all low 

19 Board, “Stress Wave Analysis Provides Early Detection of Lubrication Problems”.

frequency vibrations associated with device dynamics and leaving only the 

time history of shock waves or frictional modulation events. Healthy equip-

ment has the fewest shock events, so the stress wave spectrum for most 

healthy equipment is a relatively flat horizontal line, as shown in Figure 6 

(a). In the case of a localized damage zone (such as a roller seat or the 

tooth of a gear), a repeated shock event occurs when the damage zone 

is in contact with its matching component. This repetitive shock event is 

shown in the spectrum in Figure 6 (b), in which frequency spikes exceed 

10 dB above the background level. When these peaks occur, the geometry 

of the gear and the bearing element are analyzed at their rotational speed 

to determine the precise parts that could cause the shock events at this 

frequency, indicating the potential damaged parts and their positions. 

These three tools (SWE, Stress Wave Amplitude histogram, and the Stress 

Wave Spectrum), are very successful in the diagnosis of various mechan-

ical transmission gears and rolling bearing issues19. The operation history 

of SWE has the advantage of closely documenting trending fault symp-

Figure 3: Stress Wave Energy (SWE)

Figure 4: SWE during the Failure Process

Stress Wave Analysis for Prognostic Health Management
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toms over time, and can be comprehensively used in the detection and 

quantification of a gear and bearing system’s degree of damage. SWE is 

highly sensitive to the improper repair and lubrication degradation caused 

by oil pollution and abnormal pre-load, and SWE measurement provides 

accurate fault location data, down to even the internal mechanisms of 

a system. Stress Wave Amplitude histograms are extremely effective in 

early detection of non-periodic events (such as fluid or particle contami-

nation, or slippage between rolling bearings and seat rings) that are often 

associated with lubrication problems. The Stress Wave Spectrum is very 

sensitive to abnormal dynamic loads and very small local fatigue damage 

in the early stage. 

FEATURE EXTRACTION SOFTWARE

The main idea of the signal processing-based fault diagnosis method is 

that multiple feature vectors in the depth of the time domain and the fre-

quency domain are obtained using signal analysis theory, then the location 

of the fault source is determined using the relation between these feature 

vectors and the system fault source20.

Stress wave signal analysis and processing techniques can be done by 

time domain analysis, frequency domain analysis, time-frequency domain 

analysis, and time series modeling analysis. These analysis and process-

20 Chen Guo, “Structure self-adaptive neural network model realizing structural risk minimization principle,” Chinese Journal of Scientific Instrument, 28(10) (2007): 1874-1879.
21 Steve Scheeren, “Aircraft Engine Stress Wave Analysis Report [R].” Scientech, 2015.

ing techniques are used to observe and analyze the stress wave signals 

from different angles and provide different means for extracting feature 

information related to the device’s running state.

The feature extraction software developed for stress wave analysis is used 

to accurately characterize SWPT and compressed SWPT digital recording 

files; Quantitative analysis of the SWPT of running equipment’s friction 

and shock events can also be carried out by this software. The feature 

extraction software also analyzes SWA using various methods, including 

the time domain and frequency domain methods. The time domain meth-

od uses mean value, mean square deviation, peak value, pulse, and so 

on to analyze the waveform. The frequency domain method uses Fourier 

transform technique to analyze the waveform21.

Time Domain Feature Extraction Method

The time domain method starts with the digital record file of SWPT. The 

mathematical transformation is then applied to the time series data to 

characterize a variety of waveform features such as pulse amplitude, 

duration, and energy content.

Figure 7 shows part of the SWPT time history digital record file. When the 

sampling rate of 10K is taken (10000 samples/s) for the duration of 2 

seconds (i.e., 20000 data points), the size of the SWPT digital record file 

Stress Wave Analysis for Prognostic Health Management

Figure 5: Stress Wave Amplitude Histogram

Figure 6: Stress Wave Spectrums
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is about 40K (taken in binary format). The Time Domain Feature Extraction 

algorithms then compress this data into 32 waveform features in a file 

size of less than 1.3K. This converted information is then used by the AI 

algorithm to make decisions.

Figure 7 also illustrates how the extracted SWPT time domain features are 

computed. This diagram shows the duration of approximately 1 window; 

a window (W) is user-defined number of milliseconds, typically selected 

as the period corresponding to a characteristic machine frequency. The 

length of W is constant for the full data record, and is set by the analyst. A 

record (R) is the total time duration represented by the data file, which can 

be up to a maximum of 10 seconds of data (at a 10,000 sample/sec rate, 

this is 2,000,000 data points).

Both features extracted from the SWPT depend on exceeding the limit 

threshold (L). This limit is calculated for each window as a multiple of the 

mean of the lowest 10% of positive values of the instantaneous amplitude 

(Ai) of the SWPT during the window. The Limit Threshold Factor (LTF) used 

to calculate the L is a constant of the full record length, which can be set 

by the analyst.

In Figure 7:

• SWPD (Stress Wave Peak Duration): The period of time between an       

   upward a breach of the threshold L and when the Ai next falls below L.

• SWPE (Stress Wave Peak Energy): The sum of each data point (Ai-L)  

    during the SWPD. That is:

(4)

• Ai (Instantaneous Amplitude): The instantaneous amplitude of a stress  

   wave pulse train (SWPT).

• SWPA (Stress Wave Pulse Amplitude): Maximum value of Ai during   
   SWPD.

• SWPAp: Peak amplitude (SWPA) of SWPT in window Wn.

• L (Limit Threshold): User defined thresholds that are higher than the  
   minimum A value during window W.

• W (Window): User defined window W1.

• R (Record): Record length.

• SWPE/W (Stress Wave Peak Energy at each Window): The sum of all  
   individual SWPE in the window.

• SWE/W (Stress Wave Energy per Window): Values of all Ai values 

   (greater than zero) in the data points occurring in the window.

• PEF/W (Peak Energy Factor per Window): The ratio of SWPE/W to   
   SWE/W.

• SWE/R (Stress Wave Energy per Recording): The numeric sum of all  
   the Ai values greater than zero for all data points that occur during all    
   windows of a data record.

• SWPE/R (The Peak Energy of Each Stress Wave Recorded): The sum of  
   all the individual SWPE values within a record.

• PEF/R (Peak Energy Factor per Recording): The ratio of SWPE/R to   
   SWE/R.

• PEAKS/R (Peak Value per Record): The total number of SWPT peaks  
   that occur during a record.
• SWPA/R (Stress Wave Peak Amplitude per Record): Maximum Ai value  
   in records.

Four statistical parameters (S1, S2, S3 and S4) are also calculated for 

each of the 5 window length features for the full record duration. These 

4 statistical parameters (describing the probability density distributions of 

the ex-tracted features) are calculated for all the individual SWPA values 

in the record – this yields multiple time domain statistical parameters 

of the SWPT. Statistical Parameters (S1, S2, S3 and S4) are defined as 
follows: 

    S1: 3rd Moment test for Normal Distribution.

Figure 7: Time Domain Characteristics of Stress Wave
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    S2: Maximum value of the population 10.
    S3: The ratio of (Maximum - Mean) / (Maximum - Minimum).
    S4: Ratio of the standard deviation of the population to the mean of the  
          population.

Frequency Domain Feature Extraction Method

The time domain’s statistical characteristic index can only reflect the 

general operational state of mechanical equipment, so it is best used in 

fault diagnosis system for fault monitoring and trend prediction. To know 

the location and type of the fault, further analysis via the frequency domain 

is necessary. Frequency spectrum analysis is an important and the most 

commonly used method of this analysis22. 

Vibration signals generated by operating machinery are periodic signals 

related to speed. They are represented with the following sine signal:

(5)

If the period of the sinusoidal signal is T, then:

(6)

Periodic signals satisfy the Dirichlet condition, and can be expressed by a 

sine function in the form of Fourier series: 

(7)

(n=1,2,3,......)

The physical meaning of Equation (7) shows that periodic signals can be 

expressed as the sum of a constant component α0 and a series of sinusoi-

dal components. 

The sinusoidal component of n=1 is called the fundamental frequency; 

the corresponding ω0 is called the fundamental frequency of the periodic 

signal. The other sinusoidal components are called the N sub-harmonic, 

according to the values of n. Assume that the highest frequency com-

ponents contained in x(t) is fx, the highest analysis frequency of  the fast 

Fourier transform (FFT) fc=(1.5~2)fx, and the suitable sampling frequency 

is fs=2fc=(3~4)fx.

Frequency refining analysis can improve the resolution of the key spectral 

regions and the analysis accuracy. The basic idea of frequency refining 

analysis is to use the frequency shift theorem to modulate the analyzed 

signal, and then resample it into the Fourier transform to obtain higher fre-

quency resolution. If the frequency is refined in the frequency band (f1~f2), 

22 Jian Zhang, Mechanical fault diagnosis technology (Beijing: China Machine Press, 2014) 5.
23 Wenxiang Lu and Runsheng Du, Measurement Information signal analysis in Mechanical engineering (Wuhan: Huazhong University of Science and Technology press, 2014) 4.

the center frequency of this band is f0=(f1+f2)/2. The analyzed signal x(k) is 

modulated repeatedly to obtain the frequency shift signal:

(8)

Among Them:

In Equation (8), Δf is the frequency interval before the refining analysis. 

According to the frequency shift theorem, Y(n)=X(n+L). It is equivalent to 

moving the line L of X(n) to the zero spectral line position of Y(n) to reduce 

the sampling frequency (2NΔf/D). After resampling the frequency shifted 

signal (or after selecting sampled data after frequency shift processing), 

the frequency resolution can be increased by D times, and the spectrum 

near the Y(n) zero spectrum line (the spectrum near the line L of X(n)) is 

analyzed.

D is a scale factor, also called a select ratio or a refining factor.

(9)

In order to ensure that the selection does not cause frequency mixing, 

anti-aliasing filtering should be performed before selection, and the cutoff 

frequency of the filter should be ½ of the sampling frequency.

The Zoom Spectrum Analysis refining (or Fast Fourier Transform, FFT) 

includes both amplitude refining and phase refining. Because of the 

additional phase shift caused by the digital filter in the Zoom/FFT process, 

the real refined phase spectrum can be obtained by modifying the phase 

characteristic of the filter23.

In an application example, a frequency analysis subroutine is used to 

generate an output signal with amplitude range from 0 to 5000Hz in 

2000 frequency bands. Each power spectrum density file is then further 

processed into 68 frequency domain features. 

The frequency domain feature extraction process begins with the SWPT 

digital record file being processed by a 2000-line FFT spectrum analysis 

module. All of the Stress Wave Spectral Density spectra are obtained by 

Root Mean Square (RMS), averaging 10 individual time records with a 

60% overlap of the data. This gives a frequency resolution of 2.5 Hz/line, 

over a 0 to 5000Hz range, from a 2 seconds TH (time history) file. 

Each stress spectrum density is then converted into a table, listing each 

signal amplitude in the first 1300 frequency lines (The 1300 lines x 2.5 

Stress Wave Analysis for Prognostic Health Management
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Hz/line = 3250 Hz). Then, the software divides the first 1300 lines of 

the spectrum into 65 segments (20 lines (50Hz)), calculates the average 

amplitude of all 1300 lines, and calculates the maximum amplitude in the 

65 50Hz band. Next, the ratio of the maximum in each band to the 1300 

line average is calculated and tabulated as 65 “peak to average” ratios (in 

dB) for each of the 65 bands of the 1300 line spectrum. The frequency 

domain feature extraction software then computes the ratio of the maxi-

mum amplitude in all 1300 lines to the average of all 1300 lines. Finally, 

the standard deviation is calculated for the “peak to average” ratios in the 

65 bands of the 1300 line spectrum. The 65 “peak to average” ratios, the 

1300 line average amplitude, the max to average ratio, and the standard 

deviation of the “peak to average” ratios are then tabulated as 68 features 

that characterize the SWPT in the frequency domain. 

DATA FUSION BASED ON POLYNEURAL NETWORK 

Neural network technology, an information processing technology that 

simulates the human brain, has developed rapidly and been widely used in 

recent years. A neural network uses a large number of simple processing 

units (neurons) to process information according to their organizational 

form of hierarchy; each layer of neurons is connected in a weighted man-

ner with the other layers using parallel architecture and parallel processing 

mechanism. Thus, the network has strong fault tolerance, self-learning and 

self-organizing abilities, and the adaptive ability to simulate the complex 

nonlinear mapping of a human brain.

    Since neural networks can effectively approximate various mappings, 

neural networks have been widely used in diagnostic reasoning, which 

can be understood as the solution of the nonlinear mapping relation of the 

fault modes. The neural network diagnosis method of stress wave analysis 

takes the time domain and frequency domain charac-teristics of the 

24 Wuke Liang et al., “Research on artificial neural network selection of vibrated faulty diagnosis of hydraulic generating set,” Chinese Journal of Scientific Instrument, 27(12), 2006: 1711-  
 1714.
25 H. Y. Jia and Y. Y. Su, “Multi-sensor fusion method based on Bayesian in singular conditions,” Electronic Measurement Technology, 36(8), 2013: 104-107.

stress wave signal as the input of the neural network, then, through neural 

network learning and training, the nonlinear mapping relation between the 

fault type and the fault symptom can be automatically formed, realizing 

the fault diagnosis24.

Multi-sensor data fusion is a new developing technology involving signal 

processing, probability statistics, information theory, pattern recognition, 

artificial intelligence, fuzzy mathematics, and other fields. It is a practical 

application technology dealing with the data processing of the problem 

of using a variety of sensors in a system. The neural network’s signal 

processing and automatic reasoning functions paired with its powerful 

nonlinear processing ability meet the requirements of the multi-sensor 

information fusion technology.

Abnormal measured data will reduce the quality of data fusion in the fu-

sion process, so a multi-sensor data fusion method based on the Bayesian 

method is used; the abnormal data is therefore eliminated before fusion 

by identifying the inconsistencies between the measured data, improving 

the accuracy of the data fusion. A probability factor can also be added to 

the Bayesian method to characterize the probability that the measured 

data is non-abnormal. When a sensor’s output data is inconsistent with 

other sensors, the added factor has the effect of increasing the posterior 

distribution variance. This method can effectively identify the inconsis-

tencies between sensor data so that the fusion accuracy can be further 

improved25.

By using a direct analytic solution of multi-sensor data fusion to avoid 

multiple iterative calculations of nonlinear differential equations, the 

amount of required calculation is reduced, raising the solution efficiency 

of multi-sensor data fusion. The performance control technique of the 

sensors can ensure the confidence and safety of multi-sensor data fusion. 

Figure 8: Multiple Input Three Layer Polynomial Neural Network

Power
CW-CONNECT.COM

9



The multi-sensor adaptive detection fusion technique can be used to raise 

the detection capabil-ity of multi-sensor networks for the less noticeable 

objects or objects in a jamming environment26.

The neural networks identify the normal and abnormal feature patterns ex-

tracted from SWPT through training – feature extraction software is used 

to compress data intelligently into a small amount of information, then the 

neural network uses these features to make accurate equipment state 

monitoring decisions. Because of the SWPT’s high signal-to-noise ratio, 

the classification is easy, and the neural network can be implemented with 

only a small amount of software code. 

The neural network of polynomial equations (PNN) can automatically 

classify stress wave data to represent the health status of equipment com-

ponents. The numerical modeling software uses a set of features extracted 

from SWPT as input to comprehensively evaluate the PNN. 

The neural network of polynomial equations (PNN) can automatically 

classify stress wave data to represent the health status of equipment com-

ponents. The numerical modeling software uses a set of features extracted 

from SWPT as input to comprehensively evaluate the PNN.

The numerical modeling software is based on statistical modeling, neural 

networks, and artificial intelligence re-search, and is a supervised induc-

tive learning tool. It combines network concepts from neural networks and 

26 Xing Liu, “Realization Techniques in Multisensor Data Fusion,” Chinese Journal of Electronics, 29(9), 2001: 1240-1242.
27 Chun-fang Li, Lian-zhong Liu, and Zhen Lu, “Probabilistic Neural Network Based on Data Field,” Chinese Journal of Electronics, 39(8), 2011: 1739-1745.

ad-vanced regression techniques to automatically synthesize polynomial 

network models from input and output value databases.

Many studies show that PNN has stronger generalization abilities and 

classification accuracy than the more widely used BP (Back Propagation) 

algorithm. Due to adopting the full training set to construct the network 

without any redundancy operations, the PNN’s recognition speed is slower; 

the space and time complexity is O(nm) (n is the number of samples, M is 

the characteristic dimension). This has been studied using various clus-

tering techniques, including Learning Vector Quantization (LVQ), K-Means, 

and Fuzzy C-Means algorithms to reduce the network size. Using the class 

center as the model layer of the PNN, the clustering technique divides 

each class into several categories; this reduces the number of neurons 

needed and improves the computing speed at the expense of a small 

amount of accuracy, and is a two stage algorithm of first clustering and 

then classification. A new optimization algorithm from the data theory field, 

the Gaussian-PNN (G-PNN), has been proposed based on Gauss potential. 

The dense region of the intra-class sample is found through Gauss poten-

tial and then the G-PNN of iterative feedback error correction increment 

density is constructed. In order to further improve the generalization 

accuracy, a G3-PNN algorithm, which integrates 3 classifiers, is proposed 

based on the resample technique27.

Stress Wave Analysis for Prognostic Health Management

Figure 9: PNN Training and Evaluation
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Figure 8 shows a data fusion model describing the three layers of neural 

networks: The first layer neuron is fused with the original data layer; the 

second layer completes the feature layer fusion, and makes the decision 

according to the features extracted from the previous layer; the output 

layer is corresponds to the decision fusion. For target recognition, the out-

put is the target recognition conclusion and its confidence. The input and 

output of the decision layer should be the confidence of the soft decision 

and the corresponding decision.

The output of any given element can be entered into the subsequent layer 

with the original input variable. The net-work is synthesized from one layer 

to the next until the network model stops improving. Each layer’s qualified 

in-puts and network synthesis policies are defined in a set of rules and 

heuristics that are inherent in the synthesis algorithm.

All the data in the network modeling database is the feature data record 

extracted from the stress wave sensor sig-nals, such as SWPA (Stress 

Wave Pulse Amplitude), SWE (Stress Wave Energy), and SWPD (Stress 

Wave Peak Du-ration). Irrelevant variables must be ignored while retaining 

useful information; if the scale is not good enough, it will cause the model 

to be too sensitive to irrelevant variables or it won’t extract practical 

features. A model can understand the correspondence between the data 

information and its status tag. 

By using a random number generator, the network modeling database is 

divided into two sets of data sets for train-ing and testing. The training 

data set is 75% of the modeling database, and the test data set is 25% 

of the modeling database. The training data set is used to estimate the 

parameters of all the candidate models and to establish clas-sifiers. The 

test data set is used to test the classification ability of the trained models 

and evaluate the synthetic network. The mean square error is calculated 

for each model, and then compared. The least square error model is then 

chosen as the selection model. Modeling parameters are used to adjust 

the network structure or to control the complexity of the model.

Figure 9 shows the development process of the PNN.

Table 2 shows a typical false alarm/dismissal report, which is applied to 

polynomial neural network outputs (ranging from 0 to 1) to optimize the 

decision threshold. By optimizing the PNN, the evaluation data set is iterat-

ed, and the false alarms and false dismissals are tabulated as the decision 

threshold function to generate the reports. 

To achieve comprehensive and accurate state monitoring, feature ex-

traction and polynomial neural network (PNN) software modules can clas-

sify input data in many different ways. For example, a PNN can determine 

if the data from one sensor is not normal, while another network utilizes 

data from multiple sensors to confirm the difference detected by the PNN. 

Tests show that within 1 hours of equipment failure, the probability of 

detecting gear or bear-ing damage is greater than 99.9%, and the false 

alarm probability of running 1000 hours under the condition of equipment 

health is less than 1/1000. The data fusion architecture software not only 

can detect the fault accurately, but also can find the fault, separate the 

fault source into its part, show the deterioration rate, and estimate the 

part’s remaining service life. In addition, in order to guarantee the high 

probability of fault detection and low false positive rate of early fault de-

tection, the confidence test is usually needed. The data fusion framework 

combines all of these capabilities in the rules of the expert system.

The adjustable data fusion architecture of stress wave analysis has 

demonstrated high levels of accuracy in making diagnostic decisions. The 

key to simultaneously achieving both a high probability of problem detec-

tion and a low probability of false alarm is to define quantitative accuracy 

requirements, and to have an easily adjustable data fusion architecture.

Table 2: Decision Threshold Optimization
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CONCLUSION

Prognostic health management technology based on stress wave analysis can diagnose and evaluate equipment status and failure at the earliest point in 

time. The operational tests show that it has the following advantages when compared with other monitoring methods at present mainstream application: 

1) Stress wave analysis can provide equipment trend parameters so that operators can understand the extent of equipment damage and deterio-  

 ration rate, and better predict when damage will cause production shutdown. Based on this data, the planned outage can be carried out ahead  

 of schedule, or parts can be delayed until the next outage, avoiding huge economic losses caused by unexpected shutdown.

2) Compared with the current mainstream adoption of vibration and lubrication analysis technology, stress wave technology has more 

 advantages in the detection of bearing and gear damage, axial unbalance, decreased lubricating effect, sealing damage, and other failure   

 mechanisms, providing a better solution for predictive equipment status monitoring solution.

3) The stress wave technique is based on ultrasonic waves, which can detect even slight damage signs in their earliest stages. At this point in the  

 damage process, the temperature or vibration signal has not yet risen and thus cannot be detected by other techniques.

4) Stress wave technology can detect not only  equipment failure, but also determine whether the failure is related to the production process,   

 and whether it is affected by the operation process. Therefore, it can provide effective basic equipment operation data for high quality and high  

 efficiency production control processes, and provide data analysis for optimizing production operation.

Prognostic health management technology based on stress wave analysis has incomparable advantages. It adopts advanced instrument measurement 

and analysis technology to detect and analyze the friction, mechanical shock, and dynamic load of running equipment in real time. Combined with neural 

networking, cloud computing, data mining, and artificial intelligence technology, it provides real-time remote equipment monitoring, predicts faults 

early, provides customers with regular equipment health diagnosis analysis reports, helps enterprises to improve production safety, reduces costs, and 

achieves better production efficiency.

The system has an adjustable data fusion architecture; therefore, it can be easily combined with other inputs from continuous variable diagnostic 

parameters (vibration, temperature, pressure, etc.) to form a distributed sensing and monitoring system, centralizing the diagnosis and management for 

entire plant equipment systems. It can also be combined with the further research of equipment maintenance planning models and system scheduling 

optimization strategies to realize whole lifecycle health management of modern enterprise intelligent manufacturing systems.

Stress Wave Analysis for Prognostic Health Management
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The development of system accuracy requirements for diagnostic indica-

tions is based upon the way each individu-al indication is used, and the 

differing consequences an error can impose on operational safety, mission 

reliability, availability, and life cycle costs. Only three adjustment param-

eters are required to tailor the accuracy of this data fusion architecture 

to system requirements: the decision threshold for the per-measurement 

decision making net-work, and the X & N parameters in the ìX of Nî Confi-

dence Test.

Each polynomial equation network is implemented as a separate software 

object. As more data can be used for training, individual networks can be 

updated and replaced to improve their diagnostic accuracy. Each updated 

polynomial network will adjust its threshold according to the performance 

results of the training and evaluation data. Then, the confidence check-

ing parameters (X and N) are adjusted to meet the decision accuracy 

requirements of the system. In this way, the software objects in the data 

fusion architecture can be easily updated and adjusted without the need to 

modify the software code that defines the entire data fusion architecture.
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